A(-3,2),b(3,2) and c(-3,-2) are the vertices of the right angled tringle
Answers
Answered by
0
please Mark it brainliest answer please Mark it brainliest answer
Answer:
Step-by-step explanation:
Formula used:
Midpoint formula:
The midpoint of the line joining\begin{lgathered}(x_1,y_1) and (x_2,y_2) is\\\\(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})\end{lgathered}
(x
1
,y
1
)and(x
2
,y
2
)is
(
2
x
1
+x
2
,
2
y
1
+y
2
)
Distance formula:
The distance between two points\begin{lgathered}(x_1,y_1) and (x_2,y_2) is\\\\d= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\end{lgathered}
(x
1
,y
1
)and(x
2
,y
2
)is
d=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
Let S be the midpoint of hypotenuse BC.
Then, S is
(\frac{3-3}{2},\frac{2-2}{2})(
2
3−3
,
2
2−2
)
(0,0)
Now,
\begin{lgathered}SA=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SA=\sqrt{(0+3)^2+(0-2)^2}\\SA=\sqrt{9+4}\\SA=\sqrt{13}\\\\SB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SB=\sqrt{(0-3)^2+(0-2)^2}\\SB=\sqrt{9+4}\\SB=\sqrt{13}\\\\SC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SC=\sqrt{(0+3)^2+(0+2)^2}\\SC=\sqrt{9+4}\\SC=\sqrt{13}\end{lgathered}
SA=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SA=
(0+3)
2
+(0−2)
2
SA=
9+4
SA=
13
SB=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SB=
(0−3)
2
+(0−2)
2
SB=
9+4
SB=
13
SC=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SC=
(0+3)
2
+(0+2)
2
SC=
9+4
SC=
13
This implies
SA=SB=SC
Hence S is equidistant from A, B and C
Answer:
Step-by-step explanation:
Formula used:
Midpoint formula:
The midpoint of the line joining\begin{lgathered}(x_1,y_1) and (x_2,y_2) is\\\\(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})\end{lgathered}
(x
1
,y
1
)and(x
2
,y
2
)is
(
2
x
1
+x
2
,
2
y
1
+y
2
)
Distance formula:
The distance between two points\begin{lgathered}(x_1,y_1) and (x_2,y_2) is\\\\d= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\end{lgathered}
(x
1
,y
1
)and(x
2
,y
2
)is
d=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
Let S be the midpoint of hypotenuse BC.
Then, S is
(\frac{3-3}{2},\frac{2-2}{2})(
2
3−3
,
2
2−2
)
(0,0)
Now,
\begin{lgathered}SA=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SA=\sqrt{(0+3)^2+(0-2)^2}\\SA=\sqrt{9+4}\\SA=\sqrt{13}\\\\SB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SB=\sqrt{(0-3)^2+(0-2)^2}\\SB=\sqrt{9+4}\\SB=\sqrt{13}\\\\SC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\SC=\sqrt{(0+3)^2+(0+2)^2}\\SC=\sqrt{9+4}\\SC=\sqrt{13}\end{lgathered}
SA=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SA=
(0+3)
2
+(0−2)
2
SA=
9+4
SA=
13
SB=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SB=
(0−3)
2
+(0−2)
2
SB=
9+4
SB=
13
SC=
(x
1
−x
2
)
2
+(y
1
−y
2
)
2
SC=
(0+3)
2
+(0+2)
2
SC=
9+4
SC=
13
This implies
SA=SB=SC
Hence S is equidistant from A, B and C
gagansharma53:
please Mark it brainliest answer please
Similar questions