English, asked by harshtomar185, 10 months ago

(a) -3
22. If a, b, y be the zeros of the polynomial p(x) such that (a + B + 7) = 3,
(aß + By + ya) = -10 and aby = -24 then p(x) = ?​

Answers

Answered by Anonymous
16

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ sum of zeroes = 3
  • ✦ sum of product of zeroes = -10
  • ✦ product of zeroes = -24

\:

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦ we need to find the polynomial

\huge{\underline{\bf{\red{Solution:-}}}}

\:

If α , β, and γ are the zeroes of the polynomial.

Then,

\:

[ x³- ( α + β + γ)x² +(αβ +βγ +γα )x -αβγ ]

\:

  • α + β + γ = 3
  • αβ + βγ + αγ = -10
  • αβγ = -24

p(x) = [ x³- ( 3)x² + (-10 )x - (-24) ]

p(x) = x³- 3x² - 10x + 24 = 0

\:

So, the required cubic polynomial is

p(x) = x³- 3x² - 10x + 24 = 0

\:

Verification :-

  • a = 1
  • b = -3
  • c = -10
  • d = 24

\:

sum of zeroes = - b/a

α + β + γ = - b/a

\\ \longmapsto  \rm\:3 = \frac{-(-3)}{1}\:\\\longmapsto  \rm\: 3=3\\\\

αβ + βγ + αγ = c/a

 \\\longmapsto  \rm\: -10=\frac{-10}{1}\:\\\longmapsto  \rm\: -10= -10\\\\

αβγ = - d/a

 \longmapsto  \rm\: -24=\frac{-24}{1}\:\\\longmapsto  \rm\: -24 = -24\\\\

LHS = RHS

\:

hence verified.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
0

 \huge \underline \red{answer}

If α , β, and γ are the zeroes of the polynomial.

Then,

[ x³- ( α + β + γ)x² +(αβ +βγ +γα )x -αβγ ]

α + β + γ = 3

αβ + βγ + αγ = -10

αβγ = -24

p(x) = [ x³- ( 3)x² + (-10 )x - (-24) ]

p(x) = x³- 3x² - 10x + 24 = 0

So, the required cubic polynomial is

p(x) = x³- 3x² - 10x + 24 = 0

THANK YOU.

Similar questions