a^3 - a^2b + ab^ 2 - b^3
Answers
Step-by-step explanation:
a3 + b3
First of all let us know what is (a+b)^3 (“^” This is a power symbol)
Since the expression is derived from (a+b)^3
So let us expand it
(a+b)^3
= (a+b) (a+b) (a+b)
={(a+b) (a+b)} (a+b)
={a(a+b) + b(a+b)} (a+b)
=(a^2 + ab + ab + b^2) (a+b)
=(a^2 + b^2 + 2ab) (a+b)
=a^2(a+b) + b^2(a+b) + 2ab(a+b)
=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2
=a^3 + b^3 + 3a^2b + 3ab^2
=a^3 + b^3 + 3ab(a+b)
Now when we have expanded (a+b)^3 = a^3 + b^3 + 3ab(a+b)
We can equate it
(a+b)^3 = a^3 + b^3 + 3ab(a+b)
(a+b)^3 - 3ab(a+b) = a^3 + b^3
a^3 + b^3 = (a+b)^3 - 3ab(a+b)
Let us graphically represent this formula:
Let us assume
a = 1cm and b = 2cm
(a+b)^3
which is equal to a^3 + b^3 + 3a^2b + 3ab^2
So when we make a cube by adding a+ b we get 3 times of a^2b and 3 times of ab^2
Hope this could help you
Thank you
Answer:
- (a-b) ^3 = (a-b) (a-b) ^2
=(a-b) (a^2+b^2-2ab)
=a^3-b^3-3a^2b-3ab^2
=a^3-b^3-3ab(a-b)