Math, asked by sandipchowdhary3121, 1 year ago

A^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) proof

Answers

Answered by UltimateMasTerMind
2

Solution:-

To Proof :- [ a³ + b³ + c³ - 3abc = ( a+b+c)(a² + b² + c² - ab - bc - ca) ]

Proof:-

Taking L.H.S.

=) a³ + b³ + c³ - 3abc

=) ( a+b)(a²+b² -ab) + c³ - 3abc

Here (-ab) can be written as [ 2ab - 3ab].

=) ( a+b)(a²+b² + 2ab - 3ab) + c³ - 3abc

=) ( a+b) [ ( a+b )² - 3ab ] + c³ - 3abc

Now, On Multiplying we get,

=) ( a+b)³.(a+b) - (3ab).(a+b) + c³ - 3abc

=)[ a+b+c]³ - 3abc

=) ( a+b+c) [ ( a+b)² + c² - ( a+b)c] - 3ab( a+b) - 3abc

=) (a+b+c) [ ( a+b)² + c² - ( a+b)c] - 3ab ( a+b+c)

=) ( a+b+c) [ a² + b² + 2ab + c² - ac - bc] - 3a²b - 3ab² - 3abc

=) ( a+b+c) [ a² + b² + 2ab + c² - ac - bc - 3ab]

=) ( a+b+c) [ a² + b² + c² -ab - ac - bc]

Hence Proved!!

Similar questions