Math, asked by shiva8745, 1 year ago

A) 4 b) 2

explain with proof

Attachments:

Answers

Answered by Mankuthemonkey01
3



Here is how,

on rationalising,

 \frac{1}{1 +  \sqrt{2} }  \\  =  >  \frac{1(1 -  \sqrt{2}) }{(1 +  \sqrt{2} )(1 -  \sqrt{2)} }  \\  =  >  \frac{1 -  \sqrt{2} }{1 - 2}  \\  =  >  \frac{1 -  \sqrt{2} }{ - 1}  \\  \\  =  >  \sqrt{2 }  - 1
Similarly, if you rationalize others, we can see,
 \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \\  \\  =  \sqrt{3}  -  \sqrt{2}  \\  \\  \frac{1}{ \sqrt{3}  +  \sqrt{4} }  =  \sqrt{4}  -  \sqrt{3} \\   = 2 -  \sqrt{3}  \\  \\  \frac{1}{ \sqrt{4}  +  \sqrt{5} }  =  \sqrt{5 }  -  \sqrt{4}  \\  =  >  \sqrt{5 }  - 2 \\  \\  \\  \frac{1}{ \sqrt{5}  +  \sqrt{6} }  =  \sqrt{6}  -  \sqrt{5 }   \\  \\  \frac{1}{ \sqrt{6}  +  \sqrt{7} }  =  \sqrt{7}  -  \sqrt{6}  \\  \\  \frac{1}{ \sqrt{7}  +  \sqrt{8} }  =  \sqrt{8}  -  \sqrt{7}  \\  \\  \frac{1}{ \sqrt{8} }  +  \sqrt{9}  =  \sqrt{9}  -  \sqrt{8}  \\  =  > 3 -  \sqrt{8}
now if we add them then,

 \sqrt{2}  - 1 +  \sqrt{3}  -  \sqrt{2}  +  2 -  \sqrt{3}  +  \sqrt{5}  - 2 +  \sqrt{6}  -  \sqrt{5}  +  \sqrt{7}  -  \sqrt{6}  +  \sqrt{8}  -  \sqrt{7}  + 3 -  \sqrt{8}  \\  \\  =  >  - 1 + 3 \\  \\  =  > 2
hence, 2 is your answer


Hope it helps dear friend ☺️✌️

shiva8745: Good
Similar questions