Physics, asked by shreeyashirai1212, 11 months ago

A 400kg satellite is in a circular orbit of radius 2R about the earth.Calculate the energy needed to transfer it to a circular orbit of radius 4R.Find the changes in it's kinetic energy and it's potential energy (Given R=6400km radius of earth g=10m/s sq.)

Answers

Answered by knjroopa
0

Explanation:

Given A 400 kg satellite is in a circular orbit of radius 2R about the earth. Calculate the energy needed to transfer it to a circular orbit of radius 4R. Find the changes in it's kinetic energy and it's potential energy (Given R=6400 km radius of earth g=10m/s sq.)

  • Given m = 400 kg, R = 6.4 x 10^6 m
  • Initial total energy = Potential energy + kinetic energy
  •                            = - Gmm /r + 1/2 mVo^2
  •                           = - Gmm / r + 1/2 m((√Gm / r)^2
  •                           = - Gmm/2r
  •                          = - Gmm / 2(2R)
  •                           = - Gmm / 4R
  • So final total energy = - Gmm / 2r
  •                                = - Gmm / 2(4R)
  •                                = - Gmm / 8R
  • So change in total energy will be
  • ΔE = Ef – Ei
  •        = – Gmm / 8R - (- Gmm / 4R)
  •        = Gmm / 8R
  •      Solving further we get
  •   Gm / (R)^2 x m R / 8
  •         = gm R / 8
  • We know acceleration due to gravity will be g is 10 m / s
  •       = 10 x 400 x 6.4 x 10^6 / 8
  •     = 3.20 x 10^9 J is the required energy.
  • So now decrease in kinetic energy
  • K.E = Ki – Kf
  •      = 1/2 (Gm / 2R) – 1/2 m(Gm/4R)
  • Δ K.E = GmR / 8 = 3.20 x 10^9 J
  • Gain in potential energy is Uf – Uc
  •                                   = - Gmm / 4R – (- Gmm / 2R)
  •                                   = - Gmm / 4R
  •                Now solving gmR / 4
  •                                 = 10 x 400 x  6.4 x 10 ^6 /  4
  •                                 = 6.40 x 10^9 J    

So gain in P.E is twice as loss in K.E

So P.E = - 2K.E

Reference link will be

https://brainly.in/question/4288837

Answered by bestwriters
1

The changes in it's kinetic energy and it's potential energy is

Given:

Mass = m = 400 kg

Radius = R = 6400 km

Acceleration due to gravity = g = 9.8 m/s²

To find:

Kinetic energy and potential energy = ?

Solution:

Initial energy is given by the formula:

\bold{E_{i}=\frac{-G M_{e}m}{4 R_{e}}}

Final energy is given by the formula:

\bold{E_{f}=\frac{-G M_{e}m}{8R_{e}}}

Change in kinetic energy and potential energy:

\bold{\Delta E=E_i-E_f}

\bold{\Delta E=\frac{-G M_{e} m}{8 R_{e}}+\frac{G M_{e} m}{4 R_{e}}}

\bold{\Delta E=\frac{g m R_{e}}{8}}

On substituting the known values, we get,

\bold{\Delta E = \frac{9.8\times 400 \times 6400}{8}}

\bold{\therefore\Delta E = 3.13 \times 10^9 \ J}

The Kinetic Energy will become half.

The Potential Energy will become twice.

Similar questions