Math, asked by bishantnayak9150, 1 year ago

A-4B+2C=16, 2A+7B-5C=83,find A+B-c=

Answers

Answered by somesh572000gmailcom
33

this is right answer...

Attachments:
Answered by adventureisland
46

\bold{A+B-C=\frac{148+2 C}{5}+\frac{17+3 C}{5}-C=\frac{(148+2 C+17+3 C-5 C)}{5}=\frac{(165)}{5}=33}

Solution:

A-4B+2C=16 ………………. (i)

2A+7B-5C=83 …………… (ii)

Multiplying (i) by 2,

2A -8B+4C=32

Now, 32+8B-4C = 83-7B+5C

\Rightarrow 8 \mathrm{B}-4 \mathrm{C}+7 \mathrm{B}-5 \mathrm{C}=83-32\Rightarrow \quad 15 \mathrm{B}-9 \mathrm{C}=51 \\\\\Rightarrow \quad 5 \mathrm{B}-3 \mathrm{C}=17 \\\\\Rightarrow \quad 5 \mathrm{B}=17+3 \mathrm{C} \\\\\Rightarrow \quad \mathrm{B}=\frac{17+3 C}{5}

Substituting value in (i) we get

A=16+4 B-2 C=16+\frac{4(17+3 C)}{5}-2 C=\frac{80+68+12 C-10 C}{5}=\frac{148+2 C}{5}

Hence,

A+B-C=\frac{148+2 C}{5}+\frac{17+3 C}{5}-C=\frac{(148+2 C+17+3 C-5 C)}{5}=\frac{(165)}{5}=33

Similar questions