Math, asked by Preetijha536, 1 year ago

a(5,1); b(1,5) and c( 3, 1) are the vertices of abc . find the length of median ad

Answers

Answered by nain31
5
 \bold{Given}

 \mathsf{Vertices \: of \: triangle}

 \mathsf{a - (5,1)}

 \mathsf{b - (1,5)}

 \mathsf{a - (3,1)}

 \mathsf{Let \: the \: d \: be  \: midpoint \:which \: when }

 \mathsf{extended \: touches \:a \: and \: is \: perpendicular \: to \: bc}

 \mathsf{For \: coordinates \: of \: d}

 \mathsf{So, \: by \: midpoint \: theorem }

 \mathsf{For \: x \:coordinates }

 \large \boxed{ \mathsf{x = \dfrac{x_1 + x_2}{2}}}

 \mathsf{x = \dfrac{3 + 1}{2}}

 \mathsf{x = \dfrac{4}{2}}

 \large \boxed{ \mathsf{x =2}}

 \mathsf{For \: y \:coordinates }

 \large \boxed{ \mathsf{y = \dfrac{y_1 + y_2}{2}}}

 \mathsf{x = \dfrac{5 + 1}{2}}

 \mathsf{x = \dfrac{6}{2}}

 \large \boxed{ \mathsf{y =3}}

 \mathsf{For \: finding \: length \: of \: ad \: apply \: distance \: formula}

 \large \boxed{ \mathsf{ ad = \sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}}}

 \mathsf{ ad = \sqrt{(2 - 5)^{2} + (3-1)^{2}}}

 \mathsf{ ad = \sqrt{(-3)^{2} + (2)^{2}}}

 \mathsf{ ad = \sqrt{9+ 4}}

 \large \boxed{\mathsf{Length \: of \: ad = \sqrt{13}}}
Similar questions