Math, asked by rohitsingh925, 1 year ago

A(5,-12) b(-5,5) c(-4,-6) find the distance of each of the following point from the origin

Answers

Answered by aastha4416
54
hope you find it helpful
Attachments:
Answered by Cricetus
7

Given:

Three points,

A (5, -12) = (x₁, y₁)

B (-5, 5) = (x₂, y₂)

C (-4, -6) =(x₃, y₃)

To Find:

The distance of each of the following point from the origin = ?

Solution:

Let the origin be D (0,0)

Now,

Distance AD = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

On substituting the values, we get

                     = \sqrt{(0-5)^2+(0+12)^2}

                     = \sqrt{(-5)^2+(12)^2}

                     = \sqrt{25+144}

                     = \sqrt{169}

                     = 13

Distance BD = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

On substituting the values, we get

                     = \sqrt{(0+5)^2+(0-5)^2}

                     = \sqrt{(5)^2+(-5)^2}

                     = \sqrt{25+25}

                     = \sqrt{50}

                     = 5\sqrt{2}

Distance CD = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

On substituting the values, we get

                     = \sqrt{(0+4)^2+(0+6)^2}

                     = \sqrt{(4)^2+(6)^2}

                     = \sqrt{16+36}

                     = \sqrt{52}

                     = 2\sqrt{13}

Similar questions