India Languages, asked by priyanika9689, 9 months ago

A=((5&2&9@1&2&8)), எனில் B= ((1&7@1&2@5&-1)) (AB)^T= B^T A^T என்பதை சரிபார்க்க.

Answers

Answered by vinayraghav0007
0

Answer:

please write in Hindi or English language to get correct answer of this question,

Answered by steffiaspinno
1

விளக்கம்:

A=\left[\begin{array}{lll}5 & 2 & 9 \\1 & 2 & 8\end{array}\right]

B=\left[\begin{array}{cc}1 & 7 \\1 & 2 \\5 & -1\end{array}\right]

(A B)^{T}=B^{T} A^{T}

இடபக்கம்

AB^T

A B=\left[\begin{array}{lll}5 & 2 & 9 \\1 & 2 & 8\end{array}\right]\left[\begin{array}{cc}1 & 7 \\1 & 2 \\5 & -1\end{array}\right]

     =\left[\begin{array}{ll}5+2+45 & 35+4-9 \\1+2+40 & 7+4-8\end{array}\right]

     =\left[\begin{array}{ll}52 & 30 \\43 & 3\end{array}\right]

(A B)^{T}=\left[\begin{array}{ll}52 & 43 \\30 & 3\end{array}\right]........(1)

வலபக்கம்

B^{T} A^{T}

B^{T}=\left[\begin{array}{ccc}1 & 1 & 5 \\7 & 2 & -1\end{array}\right]

A^{T}=\left[\begin{array}{ll}5 & 1 \\2 & 2 \\9 & 8\end{array}\right]

B^{T} A^{T}=\left[\begin{array}{ccc}1 & 1 & 5 \\7 & 2 & -1\end{array}\right]\left[\begin{array}{cc}5 & 1 \\2 & 2 \\9 & 8\end{array}\right]

         =\left[\begin{array}{cc}5+2+45 & 1+2+40 \\35+4-9 & 7+4-8\end{array}\right]

         =\left[\begin{array}{ll}52 & 30 \\30 & 3\end{array}\right]

B^{T} A^{T} =\left[\begin{array}{ll}52 & 30 \\30 & 3\end{array}\right].......(2)

(1) , (2) லிருந்து

இடபக்கம் = வலபக்கம்

(A B)^{T}=B^{T} A^{T} என சரிபார்க்கபட்டது.

Similar questions