Physics, asked by rb6000824, 9 months ago

A=5 B=8 units and separated by60degrees find the resultant between two vectors​

Answers

Answered by Anonymous
5

GiveN :

  • First Vector \sf{(\overrightarrow A ) = 5} units.
  • Second Vector \sf{(\overrightarrow B) = 8} units.
  • Angle between vectors \sf{\theta = 60^{\circ}}

To FinD :

  • Resultant

SolutioN :

Used formula for resultant of the vectors (Triangle law or Parallelogram law of vector addition)

  • let resultant vector be \sf{\overrightarrow R}

\implies \sf{\overrightarrow{R} = \sqrt{\overrightarrow A^2 + \overrightarrow B^2 + 2 \overrightarrow{AB} \cos \theta}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{5^2 + 8^2 + (2 \times 5 \times 8) \times \cos \theta}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{25 + 64 + 2(40) \cos 60^{\circ}}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{89 + 80 \cos 60^{\circ}}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{89 + 80 \times \dfrac{1}{2}}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{89 + 40}} \\ \\ \\ \implies \rm{\overrightarrow R = \sqrt{129}} \\ \\ \\ \implies \rm{\overrightarrow R = 11.357} \\ \\ \\ \implies \rm{\overrightarrow R \approx 11.3} \\ \\ \\ \underline{\rm{\therefore \: Resultant \: vector \: is \: 11.3}}

Similar questions