Math, asked by rajakartik24121999, 8 months ago

a) 500 students selected at random from 1500 students enrolled in a computer crash programme were classified according to the age and grade points giving the following data: Age (in years) Grade Point Below 20 21-30 Above 30 Up to 5 30 50 20 5.1 to 7.5 80 70 50 7.6 to 10.0 40 80 80 Test at 5% level of significance that age and grade points are independent.

Answers

Answered by pratyushmishra10000
0

Answer:

Step-by-step explanation:

First we find the sum of each column and each row. Then we find the grand sum which is equal to 500.

\text{Table 1:}\\ u_i=\frac{1}{500}\sum_{j=1}^c O_{ij}\text{ where } c\text{ --- number of columns},\\ O_{ij} \text{ --- observed values of the contingency table},\\ i=1, \ldots, r, r\text{ --- number of rows}.\\ \text{In our case } r=c=3.\\ v_j=\frac{1}{500}\sum_{i=1}^r O_{ij}\\ \text{Table 2:}\\ E_{ij}=500u_iv_j\text{ --- values of the table (expected values)}\\ \text{Table 3:}\\ a_{ij}=\frac{(E_{ij}-O_{ij})^2}{E_{ij}}\\ chi^2_o=\sum_{i=1}^r\sum_{j=1}^c a_{ij}=28.75\text{ --- observed value of } \chi^2\\ chi^2_{cr}\approx 9.49\text{ --- critical value of } \chi^2\\ chi^2_{cr}=chi^2_{cr}(alpha;df)\\ alpha=0.05 \text{ --- significance level}\\ df=(c-1)(r-1)=4\text{ --- degrees of freedom}\\ chi^2_o>chi^2_{cr}.\text{ So we can say that age and grade points are}\\ \text{not independent}.\\ \text{Using CHISQ.TEST() we find p-value. We can see}\\ \text{that p-value<alpha. So we can say that age and grade points are}\\ \text{not independent}.Table 1:

u  

i

​  

=  

500

1

​  

∑  

j=1

c

​  

O  

ij

​  

 where c — number of columns,

O  

ij

​  

 — observed values of the contingency table,

i=1,…,r,r — number of rows.

In our case r=c=3.

v  

j

​  

=  

500

1

​  

∑  

i=1

r

​  

O  

ij

​  

 

Table 2:

E  

ij

​  

=500u  

i

​  

v  

j

​  

 — values of the table (expected values)

Table 3:

a  

ij

​  

=  

E  

ij

​  

 

(E  

ij

​  

−O  

ij

​  

)  

2

 

​  

 

chi  

o

2

​  

=∑  

i=1

r

​  

∑  

j=1

c

​  

a  

ij

​  

=28.75 — observed value of χ  

2

 

chi  

cr

2

​  

≈9.49 — critical value of χ  

2

 

chi  

cr

2

​  

=chi  

cr

2

​  

(alpha;df)

alpha=0.05 — significance level

df=(c−1)(r−1)=4 — degrees of freedom

chi  

o

2

​  

>chi  

cr

2

​  

. So we can say that age and grade points are

not independent.

Using CHISQ.TEST() we find p-value. We can see

that p-value<alpha. So we can say that age and grade points are

not independent.

Similar questions