Math, asked by jkk2614, 11 months ago

A(-9,0),B(-1,0)are two points.if p is a point such that PA/PB=3/1 find the locus of p​

Answers

Answered by Thatsomeone
15

Step-by-step explanation:

Let the coordinates of P be ( x, y )

pa =  \sqrt{ {(x + 9)}^{2}  +  {(y - 0)}^{2} }  \\  \\  \\ pb =  \sqrt{ {(x + 1)}^{2} +  {(y - 0)}^{2}  }  \\  \\  \\  \frac{pa}{pb}  =  \frac{1}{3}  \\  \\  \\   \frac{ \sqrt{ {(x  + 9)}^{2} +  {y}^{2}  } }{ \sqrt{ {(x + 1)}^{2} +  {y}^{2}  } }  =  \frac{1}{3} \\  \\  \\ squaring \: both \: sides \\  \\  \\  \frac{ {x}^{2} +  18x + 91 +  {y}^{2}  }{ {x}^{2} + 2x + 1 +  {y}^{2}  }   =  \frac{1}{9}  \\  \\  \\ cross \: multiplication \\  \\  \\ 9 {x}^{2}  + 162x + 819 +  9{y}^{2}  =  {x}^{2}  + 2x + 1 +  {y}^{2}  \\  \\  \\ 8 {x}^{2}  + 8 {y}^{2}  + 160x + 818 = 0 \\  \\  \\

THANKS!!!

Answered by ReddyNaresh
21

Answer:

LET P(x,y) be the point on the locus.

Given points A(-9,0), B(-1,0)

Given Condition PA/PB=3/1

now cross multiplication

PA=3PB

NOW Squaring On Both Sides

PA²=9PB²

P(x,y) A(-9,0) B(-1,0)

(x+9)²+(y-0)²=9(x+1)²+(y-0)²

x²+81+18x+y²=9(x²+1+2x) + y²

x²+81+18x+y²=9x²+9+18x+y²

canceling both sides y² and 18x

now 9x²+9-x²-81= 8x²-72

common 8 (x²-9)=0

therefor The locus is X²-9=0

please like and follow me. I will follow back

Similar questions