Math, asked by Krishana7173, 1 year ago

a = 9+4√5 & b= 1/a, then find the value of a2+b2

Answers

Answered by DaIncredible
2

Identities used:

(a + b)² = a² + b² + 2ab

(a - b)² = a² + b² - 2ab

(a + b)(a - b) = a² - b²

Answer:

322

Step-by-step explanation:

Given,

a = 9 + 4√5

b =  \frac{1}{a}  \\  \\  \bf \: So, \\  \\ b =  \frac{1}{9 + 4 \sqrt{5} }  \\

Rationalizing the denominator we get:

b =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{ {(9)}^{2} -  {(4 \sqrt{5} )}^{2}  }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\ \bf b =  9 - 4 \sqrt{5}

Finding the value of + :

 {a}^{2}  +  {b}^{2}  \\  \\  =  {(9 + 4 \sqrt{5} )}^{2}  +  {(9 - 4 \sqrt{5}) }^{2}  \\  \\  = ( {(9)}^{2}  +  {(4 \sqrt{5} )}^{2}  + 2.9.4 \sqrt{5} ) \\  + ( {(9)}^{2}  +  {(4 \sqrt{5}) }^{2}   - 2.9.4 \sqrt{5} ) \\  \\  = (81 + 80 + 72 \sqrt{5} )  \\  + (81 + 80  - 72 \sqrt{5} ) \\  \\  = 161 + 72 \sqrt{5}  + 161 - 72 \sqrt{5}  \\  \\  \bf = 322

Similar questions