English, asked by shuklakalash543, 4 months ago

a^9+b^9+3a^6b^3+3a^3b^6​

Answers

Answered by khadeeja78
2

Explanation:

The factorization of a^9 + b^9 + 3a^6 b^3 + 3a^3 b^6a

9

+b

9

+3a

6

b

3

+3a

3

b

6

is (a^3+b^3)^3(a

3

+b

3

)

3

.

Explanation:

Polynomial identity : x^3+y^3+3x^2y+3xy^2= (x+y)^3x

3

+y

3

+3x

2

y+3xy

2

=(x+y)

3

(1)

The given expression : a^9 + b^9 + 3a^6 b^3 + 3a^3 b^6a

9

+b

9

+3a

6

b

3

+3a

3

b

6

This expression can be rewritten as : \begin{gathered}=a^{3\times3}+b^{3\times3}+3a^{3\times2}b^3+3a^3b^{3\times2}\\\\=(a^3)^3 + (b^3)^3 + 3(a^3)^2 (b^3) + 3(a^3) (b^3)^2\ \ [\text{Identity in exponents\ }(a^m)^n=a^{mn}]\end{gathered}

=a

3×3

+b

3×3

+3a

3×2

b

3

+3a

3

b

3×2

=(a

3

)

3

+(b

3

)

3

+3(a

3

)

2

(b

3

)+3(a

3

)(b

3

)

2

[Identity in exponents (a

m

)

n

=a

mn

]

= (a^3+b^3)^3\ \ \ \ [\text{By using (1)}]=(a

3

+b

3

)

3

[By using (1)]

Hence, the factorization of a^9 + b^9 + 3a^6 b^3 + 3a^3 b^6a

9

+b

9

+3a

6

b

3

+3a

3

b

6

is (a^3+b^3)^3(a

3

+b

3

)

3

.

# Learn more :

Factorize : a(a+b)³-3a²b(a+b)

Similar questions