A 9 kg mass and a 4 kg mass have same kinetic energies the ratio of their linear momentum is
Answers
Answered by
1
m1=9kg;m2=4kgm1=9kg;m2=4kg
Kinetic energy has the formula 1/2∗m∗v21/2∗m∗v2
Momentum has the formula m∗vm∗v
KE1=KE2 => 1/2∗(m1∗v12)=1/2∗(m2∗v22)=>(v12)/(v22)=m2/m1=>(v1/v2)2=m2/m1=>v1/v2=sqrt(m2/m1)1/2∗(m1∗v12)=1/2∗(m2∗v22)=>(v12)/(v22)=m2/m1=>(v1/v2)2=m2/m1=>v1/v2=sqrt(m2/m1)
So (m1∗v1)/(m2∗v2)=(m1/m2)∗(v1/v2)=(m1/m2)∗sqrt(m2/m1)=(9/4)∗(2/3)=3/2m1∗v1)/(m2∗v2)=(m1/m2)∗(v1/v2)=(m1/m2)∗sqrt(m2/m1)=(9/4)∗(2/3)=3/2...
Kinetic energy has the formula 1/2∗m∗v21/2∗m∗v2
Momentum has the formula m∗vm∗v
KE1=KE2 => 1/2∗(m1∗v12)=1/2∗(m2∗v22)=>(v12)/(v22)=m2/m1=>(v1/v2)2=m2/m1=>v1/v2=sqrt(m2/m1)1/2∗(m1∗v12)=1/2∗(m2∗v22)=>(v12)/(v22)=m2/m1=>(v1/v2)2=m2/m1=>v1/v2=sqrt(m2/m1)
So (m1∗v1)/(m2∗v2)=(m1/m2)∗(v1/v2)=(m1/m2)∗sqrt(m2/m1)=(9/4)∗(2/3)=3/2m1∗v1)/(m2∗v2)=(m1/m2)∗(v1/v2)=(m1/m2)∗sqrt(m2/m1)=(9/4)∗(2/3)=3/2...
Similar questions