a and b are the zeros of the polynomial x^2+3x-8,can you find the value of a^2+b^2,a^3+b^3 and a^4+b^4.
Answers
EXPLANATION.
α,β are the zeroes of the polynomial,
⇒ F(x) = x² + 3x - 8.
As we know that,
Sum of zeroes of quadratic equation,
⇒ α + β = -b/a.
⇒ α + β = -3/1 = -3.
Products of zeroes of quadratic equation,
⇒ αβ = c/a.
⇒ αβ = -8.
To Find value of :
(1) = α² + β².
As we know that,
Formula of : a² + b² = (a + b)² - 2ab.
⇒ α² + β² = (α + β)² - 2αβ.
⇒ α² + β² = (-3)² - 2(-8).
⇒ α² + β² = 9 + 16.
⇒ α² + β² = 25.
(2) = α³ + β³.
As we know that,
Formula of : a³ + b³ = (a + b)(a² - ab + b²).
⇒ α³ + β³ = (α + β)(α² - αβ + β²).
⇒ α³ + β³ = (α + β)(α² + β² - αβ).
⇒ α³ + β³ = (α + β)[(α + β)² - 2αβ - αβ].
⇒ α³ + β³ = (α + β)[(α + β)² - 3αβ].
⇒ α³ + β³ = (-3)[(-3)² - 3(-8)].
⇒ α³ + β³ = -3[9 + 24].
⇒ α³ + β³ = -3[33].
⇒ α³ + β³ = - 99.
(3) = α⁴ + β⁴.
As we know that,
Formula of : a⁴ + b⁴ = (a² + b²)² - 2a²b².
⇒ α⁴ + β⁴ = (α² + β²)² - 2α²β².
⇒ α⁴ + β⁴ = [(α + β)² - 2αβ]² - 2(αβ)².
⇒ α⁴ + β⁴ = [(-3)² - 2(-8)]² - 2(-8)².
⇒ α⁴ + β⁴ = [9 + 16]² - 2(64).
⇒ α⁴ + β⁴ = [25]² - 128.
⇒ α⁴ + β⁴ = 625 - 128.
⇒ α⁴ + β⁴ = 497.
~ As the given polynomial is and and are it's zeros..!
~ The sum of any quadratic polynomial is given by
~ The sum of any quadratic polynomial is given by
~ Let's find
~ Now let's find
~ Now let's find