A and B are two non singular matrices such that A^6 = I and AB^2 = BA (B is not equal to I ). Find the value of A such that B^k = I (where I indicates Identity Matrix)
a)31
b)32
c)64
d)63
Zepto21:
*find the value of k such that B^k = I
Answers
Answered by
0
The value of A such that B^k = I is K = 63.
Option (D) is correct.
Step-by-step explanation:
A6 = I
A^-1.BA = A^-1.AB^2
A^-1 .BA = B^2
B^2 = A^-1 .BA
B^4 = B^2 . B^2 = (A^-1 .BA) . (A^-1 .BA) => A^-1B^4.A
B^4 = A^-1 (A^-1 B.A ) A = A^-2 B
B^8 = B^4 . B^4 = (A^-2 B .A^2) (A^-2 B .A^2)
=> A^-2 B^2.A^2
=> A^-2 A^-1 BAA^2 = A^-3 BA^3
B^16 A^-4 .BA^4
B^32 = A^-5 BA^5
B^64 = A^-6 BA^6
B^64 = IBI
B^64 = B
B^64.B^-1 = BB^-1 = I
B^63 = I
B^K = I
K = 63
Thus the value of A such that B^k = I is K = 63.
Similar questions
Math,
8 months ago
Social Sciences,
8 months ago
Computer Science,
1 year ago
Computer Science,
1 year ago
Physics,
1 year ago
Biology,
1 year ago