if tan theta equals 1/root 3 find the value of cosec 2 theta-sec 2 theta by cosec 2 theta+sec 2 theta
Answers
Let theta = A.
As we know that,
1 ) tan A = 1/Cot A
2 ) cosec² A = 1 + cot² A
3 ) sec² A = 1 + tan² A
Given, tan A = 1/√3 ---- eq. (1)
or cot A = √3 ------ eq.(2)
Now, (cosec² A - sec² A ) = 1 + cot² A - (1 + tan² A )
Or, 1 + cot² A - 1 - tan² A = cot² A - tan² A
By putting the value of tan A and cot A from eq. (1) and (2), we get
= ( √3 )² - ( 1/√3 )²
= 3 - 1/3
= ( 9 - 1 ) / 3
(cosec² A - sec² A ) = 8/3 --- eq. (3)
Also, cosec² A + sec² A= 1 + cot² A + 1 + tan² A
Or, 2 + cot² A + tan² A
By putting the value of tan A and cot A from eq.(1) and(2), we get
= 2 + ( √3 )² + ( 1/√3 )²
= 2 + 3 + 1/3
= 5 + 1/3
= ( 15 + 1 )/3
cosec² A + sec² A = 16/3 ---- eq. (4)
Therefore, dividing eq. (3) by eq. (4) we get the required value, i.e.
(cosec² A - sec² A)/ cosec² A + sec² A= ( 8/3 ) / ( 16/3 )
=> 8/16
=> 1/2