Math, asked by rahul4sharmau, 1 year ago

A and B can do a job in 6 days, B and C in 9 days, and A and C in 12 days. How much time will they take to complete the job if they all work together? How long will each of them take to do the job?​

Answers

Answered by vishal7425
3

Step-by-step explanation:

A+B=6. 6

B+C=9. 36. 4

A+C=12. 3

2(A+B+C)= 36/13

A+B+C=18/13DAYS

Answered by 07xxe
4

Answer:

 \\ 5 \times \frac{7}{13}  \\a =  14 \times \frac{2}{5}  \\b =  10 \times \frac{2}{7} \\ c = 72 \\

Step-by-step explanation:

ᗩ ᴀɴᴅ ᗷ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ 6 ᴅᴀʏs

.•. ɪɴ 1 ᴅᴀʏ ᗩ ᴀɴᴅ ᗷ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ =

 \frac{1}{6}

☞︎︎︎

 |1|

ᗷ ᴀɴᴅ ᑕ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ 9 ᴅᴀʏs

.•. ɪɴ 1 ᴅᴀʏ ᗷ ᴀɴᴅ ᑕ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ =

 \frac{1}{9}

☞︎︎︎

 |2|

ᗩ ᴀɴᴅ ᑕ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ 12 ᴅᴀʏs

.•. ɪɴ 1 ᴅᴀʏ ᗩ ᴀɴᴅ ᑕ ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ =

 \frac{1}{12}

☞︎︎︎

  |3|

ᴀᴅᴅɪɴɢ ᴀʟʟ ᴇǫᴜᴀᴛɪᴏɴs

 |1| and |2| and |3|

.

ɪɴ 1 ᴅᴀʏ , ( ᴡᴏʀᴋ ᴅᴏɴᴇ ʙʏ 2ᗩ , 2ᗷ ᴀɴᴅ 2ᑕ )

  =  \frac{1}{6}  +  \frac{1}{9}  +  \frac{1}{12}  \\  =  \frac{13}{36}

.•.2 ( ᴡᴏʀᴋ ᴅᴏɴᴇ ʙʏ ᴀ , ʙ , ᴄ ɪɴ 1 ᴅᴀʏ )

 \frac{13}{36} .

.•.( ᴡᴏʀᴋ ᴅᴏɴᴇ ʙʏ ᴀ , ʙ , ᴄ ɪɴ 1 ᴅᴀʏ )

 \frac{13}{36}   \div 2 =  \frac{13}{72}

☞︎︎︎

 |4|

ʜᴇɴᴄᴇ , ᴀ , ʙ , ᴄ ᴛᴏɢᴇᴛʜᴇʀ ᴄᴀɴ ᴄᴏᴍᴘʟᴇᴛᴇ ᴊᴏʙ ɪɴ 1 ᴅᴀʏ

1 \: day \div  \frac{13}{72}  =  \frac{72}{13} days \:  = 5 \times \frac{7}{13} days.

sᴜʙsᴛʀᴀᴄᴛɪɴɢ ( 4 ) ғʀᴏᴍ ( 1 ) = ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ᴛᴏ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ʙʏ 'ᴄ' ɪs

 \frac{13}{72}  -  \frac{1}{6} \\  \\   = \frac{13 - 12}{72} \\   \\  =  \frac{1}{72}

.•. 'ᴄ' ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ

72days

sᴜʙsᴛʀᴀᴄᴛɪɴɢ ( 4 ) ғʀᴏᴍ ( 2 ) = ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ᴛᴏ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ʙʏ 'ʙ' ɪs

 \frac{13}{72}  -  \frac{1}{9}  \\  \\   = \frac{13 - 8}{72}  \\  \\  =  \frac{5}{72}

.•. 'ʙ' ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ

 \frac{72}{5} days  \\   \\ = 10 \times \frac{2}{7}

sᴜʙsᴛʀᴀᴄᴛɪɴɢ ( 4 ) ғʀᴏᴍ ( 3 ) = ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ᴛᴏ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ʙʏ 'ᴀ' ɪs

 \frac{13}{72}  -  \frac{1}{12}  \\  \\  \frac{13 - 6}{72}  \\  \\  =  \frac{7}{72}

.•. 'ᴀ' ᴄᴀɴ ᴅᴏ ᴛʜᴇ ᴊᴏʙ ɪɴ

  \frac{72}{7} days \\  \\   = 14 \times \frac{2}{5}  \: days

hope \: it \: helps \:

Similar questions