Physics, asked by abhay2745, 1 year ago

A shaft rotating initially at 1725 RPM is brought to rest in 20 second calculate the number of revolutions made by shaft before stopping

Answers

Answered by spy2relo
3

The number of revolutions made by the disc is found by using the equations of angular motion. The equation that I pick to find the number of revolutions is

\Delta \Theta =\frac{1}{2}(w_0+w)t.

where \Delta \Theta is the number of revolutions made, w_0=1725RPM and w=0 and t is the time it takes to make the change in angular speed.

From the given values, we get that

\Delta \Theta =\frac{1}{2}(w_0+w)t= \frac{1}{2}\times 1725RPM\times \frac{20}{60}M =287.5Rev

The shaft makes 287.5 revolutions.

Similar questions
Math, 1 year ago