Math, asked by SanviBarnwal, 3 months ago

A and B can together finish a work jn 30 days. they worked at it for 20 days and then B left. the remaining work was done by A alone in 20 more days. in how many days can A alone do it?​

Answers

Answered by nikita6527
2

Answer:

total days become 60 because when we take 1 day work ,we reciprocal the no of days given. so when we have to find total no. of days ,we will reciprocal 1 day work

If still any query u can ask

Attachments:
Answered by Czarry
6

Answer:

60 Days

Step-by-step explanation:

Let  \tt \dfrac{1}{30} be the rate they work together in 1 day.

Work done in 20 days:

 \tt \frac{1}{30} \times 20 = \frac{20}{30} = \frac{2}{3}

Remaining work = 1 -  \tt \frac{2}{3} =  \tt \frac{1}{3}

Now, we can say that A can complete  \tt \frac{1}{3} of the work in 20 days.

Thus, to finish the whole work, A can dot it in, (20 x 3) = 60 days.

Stay safe and God bless you!

Similar questions