Math, asked by ujjwalyadav18, 1 year ago

A and B together can do a piece of work in 15 days. If A’s one day work be 3/2 times the one  day’s work of B; find in how many days each alone will do the work. 

Answers

Answered by rowboatontario
33

A alone will do the work in 25 days and B alone will do the work in 37.5 days.

Step-by-step explanation:

We are given that A and B together can do a piece of work in 15 days. Also,  A’s one day work be (3/2) times the one day’s work of B.

Let A alone can do the work in 'x days' and B alone can do the work in 'y days'.

This means that the one day work of A will be \frac{1}{x} and the one day work of B will be \frac{1}{y} .

Now, according to the question;

  • The first condition states that A and B together can do a piece of work in 15 days, that is;

          \frac{1}{x} + \frac{1}{y}= \frac{1}{15}    {in one day they do this much work}  ------ [equation 1]

  • The second condition states that A’s one day work be (3/2) times the one day’s work of B, that is;

                                \frac{1}{x} = \frac{3}{2}\times \frac{1}{y}

                                \frac{1}{x} = \frac{3}{2y}   --------------------- [equation 2]

Putting this value in equation 1 we get;

                                \frac{3}{2y} + \frac{1}{y}= \frac{1}{15}

                                   \frac{3+2}{2y} = \frac{1}{15}

                                 2y = 5 \times 15

                                    y=\frac{75}{2}

                                    y = 37.5 days

Now, putting this value in equation 2 we get;

                                     \frac{1}{x} = \frac{3}{2y}

                                     2y = 3\times x

                                     x=\frac{2\times 37.5}{3}

                                     x = 25 days.

Hence, A alone will do the work in 25 days and B alone will do the work in 37.5 days.

Answered by suyog672
7

Answer:

a and b together do a work in 15 days

Attachments:
Similar questions