Math, asked by deeptimayeegantayat, 6 months ago

A and B together can do a piece of work in 15 days. If A's one day work is 1 and half times the one day's work of B, find in how many days can each do the work.


Guys plz solve this

Answers

Answered by EliteZeal
90

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • A and B together can do a piece of work in 15 days

 \:\:

  • A's one day work is  \sf 1 \dfrac { 1 } { 2 } the one day's work of B

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Days required for both to do the work alone

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let A can complete the work in "x" days

  • Let B can complete the work in "y" days

 \:\:

 \underline{\bold{\texttt{One day work of A :}}}

 \:\:

 \sf \dfrac { 1 } { x }

 \:\:

 \underline{\bold{\texttt{One day work of B :}}}

 \:\:

 \sf \dfrac { 1 } { y }

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2 }\times \dfrac { 1 } { y }

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2y } ----- (1)

 \:\:

 \underline{\bold{\texttt{Their together one day work :}}}

 \:\:

 \sf \dfrac { 1 } { x } + \dfrac { 1 } { y }

 \:\:

 \underline{\bold{\texttt{15 days work when they work together :}}}

 \:\:

 \sf  15(\dfrac{ 1 } { x } + \dfrac { 1 } { y }) = 1 ---- (2)

 \:\:

 \underline{\bold{\texttt{Putting $\dfrac { 1 } { x } = \dfrac { 3 } { 2y }$ from (1) to (2) }}}

 \:\:

 \sf  15(\dfrac{ 1 } { x } + \dfrac { 1 } { y }) = 1

 \:\:

 \sf  15(\dfrac{ 3 } { 2y} + \dfrac { 1 } { y }) = 1

 \:\:

 \sf  15(\dfrac{ 3 + 2 } { 2y}) =  1

 \:\:

 \sf  15(\dfrac{ 5 } { 2y}) =  1

 \:\:

 \sf \dfrac { 75 } { 2y } = 1

 \:\:

 \sf 75 = 2y

 \:\:

 \sf y = \dfrac { 75 } { 2 }

 \:\:

➨ y = 37.5

 \:\:

  • Hence B can complete the work alone in 37.5 days

 \:\:

 \underline{\bold{\texttt{Putting y = 37.5 in (1) }}}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2y }

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2 \times  37.5}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 75}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 1} { 25}

 \:\:

➨ x = 25

 \:\:

  • Hence A can complete the work alone in 25 days

 \:\:

Therefore A & B alone can complete the work in 25 & 37.5 days

Answered by Ranveerx107
1

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • A and B together can do a piece of work in 15 days

 \:\:

  • A's one day work is  \sf 1 \dfrac { 1 } { 2 } the one day's work of B

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Days required for both to do the work alone

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let A can complete the work in "x" days

Let B can complete the work in "y" days

 \:\:

 \underline{\bold{\texttt{One day work of A :}}}

 \:\:

 \sf \dfrac { 1 } { x }

 \:\:

 \underline{\bold{\texttt{One day work of B :}}}

 \:\:

 \sf \dfrac { 1 } { y }

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2 }\times \dfrac { 1 } { y }

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2y } ----- (1)

 \:\:

 \underline{\bold{\texttt{Their together one day work :}}}

 \:\:

 \sf \dfrac { 1 } { x } + \dfrac { 1 } { y }

 \:\:

 \underline{\bold{\texttt{15 days work when they work together :}}}

 \:\:

 \sf  15(\dfrac{ 1 } { x } + \dfrac { 1 } { y }) = 1 ---- (2)

 \:\:

 \underline{\bold{\texttt{Putting $\dfrac { 1 } { x } = \dfrac { 3 } { 2y }$ from (1) to (2) }}}

 \:\:

 \sf  15(\dfrac{ 1 } { x } + \dfrac { 1 } { y }) = 1

 \:\:

 \sf  15(\dfrac{ 3 } { 2y} + \dfrac { 1 } { y }) = 1

 \:\:

 \sf  15(\dfrac{ 3 + 2 } { 2y}) =  1

 \:\:

 \sf  15(\dfrac{ 5 } { 2y}) =  1

 \:\:

 \sf \dfrac { 75 } { 2y } = 1

 \:\:

 \sf 75 = 2y

 \:\:

 \sf y = \dfrac { 75 } { 2 }

 \:\:

➨ y = 37.5

 \:\:

Hence B can complete the work alone in 37.5 days

 \:\:

 \underline{\bold{\texttt{Putting y = 37.5 in (1) }}}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2y }

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 2 \times  37.5}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 3 } { 75}

 \:\:

 \sf \dfrac { 1 } { x } = \dfrac { 1} { 25}

 \:\:

➨ x = 25

 \:\:

  • Hence A can complete the work alone in 25 days

 \:\:

  • Therefore A & B alone can complete the work in 25 & 37.5 days
Similar questions