(a-b)^2/(b-c)(c-a)+(b-c)^2/(a-b)(c-a)+(c-a)^2/(a-b)(b-c)
Answers
Answered by
10
Answer:
3
hope it will help u...
Attachments:
Answered by
0
(a-b)²/(b-c)(c-a) + (b-c)²/(a-b)(c-a)+(c-a)²/(a-b)(b-c) = 3
Given:
(a-b)²/(b-c)(c-a) + (b-c)²/(a-b)(c-a)+(c-a)²/(a-b)(b-c)
To find:
Find the value of (a-b)²/(b-c)(c-a) + (b-c)²/(a-b)(c-a)+(c-a)²/(a-b)(b-c)
Solution:
Given (a-b)²/(b-c)(c-a) + (b-c)²/(a-b)(c-a)+(c-a)²/(a-b)(b-c)
=
=
=
From algebraic identities
(a-b)³+(b-c)³+(c- a)³ = 3(a-b)(b-c)(c-a)
= = 3
Therefore,
(a-b)²/(b-c)(c-a) + (b-c)²/(a-b)(c-a)+(c-a)²/(a-b)(b-c) = 3
#SPJ2
Similar questions