Math, asked by sanju538, 1 year ago

a^+b^+2b+4a+5=0,then the value of (a-b)/(a+b) is​

Answers

Answered by sivaprasath
14

Answer:

Step-by-step explanation:

Given :

a² + b² + 2b + 4a + 5 = 0

To Find :

The value of : \frac{a - b}{a + b}

Solution :

a² + b² + 2b + 4a + 5 = 0

⇒ (a² + 4a + 4) + (b² + 2b + 1) = 0

⇒ [(a)² + 2(2)(a) + (2)²] + [(b)^2 + 2(1)(b) + (1)²]

⇒ (a + 2)² + (b + 1)² = 0

Note :

If sum of two squares are zero, then, the numbers MUST BE EQUAL TO ZERO.

⇒ (a + 2) = 0 ⇒ a = -2

⇒ (b + 1) = 0 ⇒ b = -1,.

Hence,

\frac{a - b}{a + b} = \frac{-2 - ( -1)}{ -2 + (-1)}

\frac{-2 + 1}{-2 - 1} = \frac{-1}{-3} = \frac{1}{3}

\frac{a - b}{a + b} = \frac{1}{3}

Answered by manish5365
1

 \huge \mathfrak \red{ANSWER :}

undefined plz write your question clearly.

 \green{STEP-BY-STEP \:  \:  VERIFICATION:}

 \red{ {a}^{2}  +  {b}^{2}  + 2b + 4a + 5 = 0} \\    \red{=  >} \green{ {a}^{2}  + 4a + (b {}^{2}   + 2b + 5) = 0} \\   \purple{=  > }a =  \frac{ - b  \frac{ + }{} \sqrt{ {b}^{2}  -4ac }  }{ 2a }  \\  =  > \blue{a =   \frac{ - 4 \frac{ + }{}  \sqrt{ {4}^{2}  - 4 \times 1 \times ( {b}^{2}  + 2b + 5)} }{2 \times 1}  } \\   \orange{=  > } \pink{a =   \frac{ - 4 \frac{ + }{}  \sqrt{ {16}  -  ( 4{b}^{2}  + 8b + 20)} }{2 }  } \\  =  > a = undfined \: since \:  \:  \sqrt{ -  {?}^{} } \:  \:  is \: imaginary.

Similar questions