If 2^a + 3^b = 17 and 2^(a+2) - 3^(b+1) =5, then find the value of a & b.
Answers
Answer:
a = 3 , b = 2
Step-by-step explanation:
Given :
...(i)
&
...(ii)
To Find :
The values of a & b,.
Solution :
Let &
Then,
(i) ⇒
⇒ x + y = 17 ...(iii)
(ii) ⇒
⇒
⇒
⇒ 4x - 3y = 5 ...(iv)
Then,
By adding both the equation obtained from (i) & (ii)
i.e., 3 × (i) + (ii)
⇒ 3(x + y) + (4x - 3y) = 3(17) + 5
⇒ 3x + 3y + 4x - 3y = 51 + 5
⇒ 7x = 56
⇒ x = 8,.
⇒
⇒
⇒ a = 3,.
_
By substituting value of x in (iii),
We get,
⇒ x + y = 17
⇒ 8 + y = 17
⇒ y = 17 - 8
⇒ y = 9,
⇒
⇒
⇒
∴ a = 3 , b = 2
Answer:
a = 3 , b = 2
Step-by-step explanation:
Given :
2^a + 3^b = 17 ...(i)
&
2^{a+2} - 3^{b+1} = 5 ...(ii)
To Find :
The values of a & b,.
Solution :
Let 2^a = x
&
3^b = y
Then,
(i) ⇒2^a + 3^b = 17
⇒ x + y = 17 ...(iii)
(ii) ⇒ 2^{a + 2} - 3^{b + 1} = 5
⇒ (2^2)(2^{a}) - (3^1)(3^{b}) = 5
⇒ 4(2^{a})- 3(3^{b}) = 5
⇒ 4x - 3y = 5 ...(iv)
Then,
By adding both the equation obtained from (i) & (ii)
i.e., 3 × (i) + (ii)
⇒ 3(x + y) + (4x - 3y) = 3(17) + 5
⇒ 3x + 3y + 4x - 3y = 51 + 5
⇒ 7x = 56
⇒ x = 8,.
⇒ 2^a = 8
⇒ 2^a = 2^3
•°• a = 3,.
_
By substituting value of x in (iii),
We get,
⇒ x + y = 17
⇒ 8 + y = 17
⇒ y = 17 - 8
⇒ y = 9,
⇒ 3^b = 9
⇒ 3^b = 3^2
•°• b = 2