Math, asked by satishkashyap0202200, 11 months ago

If 2^a + 3^b = 17 and 2^(a+2) - 3^(b+1) =5, then find the value of a & b.

Answers

Answered by sivaprasath
25

Answer:

a = 3 , b = 2

Step-by-step explanation:

Given :

2^a + 3^b = 17  ...(i)

&

2^{a+2} - 3^{b+1} = 5  ...(ii)

To Find :

The values of a & b,.

Solution :

Let 2^a = x & 3^b = y

Then,

(i) ⇒2^a + 3^b = 17

⇒ x + y = 17  ...(iii)

(ii) ⇒ 2^{a + 2} - 3^{b + 1} = 5

(2^2)(2^{a}) - (3^1)(3^{b}) = 5

4(2^{a})- 3(3^{b}) = 5

⇒ 4x - 3y = 5 ...(iv)

Then,

By adding both the equation obtained from (i) & (ii)

i.e., 3 × (i) + (ii)

⇒ 3(x + y) + (4x - 3y) = 3(17) + 5

⇒ 3x + 3y + 4x - 3y = 51 + 5

⇒ 7x = 56

⇒ x = 8,.

2^a = 8

2^a = 2^3

⇒ a = 3,.

_

By substituting value of x in (iii),

We get,

⇒ x + y = 17

⇒ 8 + y = 17

⇒ y = 17 - 8

⇒ y = 9,

3^b = 9

3^b = 3^2

b = 2

∴ a = 3 , b = 2


sivaprasath: they'll do when they see your answer,.
sivaprasath: I don't have any idea, bro,.
Answered by manish5365
11

Answer:

a = 3 , b = 2

Step-by-step explanation:

Given :

2^a + 3^b = 17 ...(i)

&

2^{a+2} - 3^{b+1} = 5 ...(ii)

To Find :

The values of a & b,.

Solution :

Let 2^a = x

&

3^b = y

Then,

(i) ⇒2^a + 3^b = 17

⇒ x + y = 17 ...(iii)

(ii) ⇒ 2^{a + 2} - 3^{b + 1} = 5

⇒ (2^2)(2^{a}) - (3^1)(3^{b}) = 5

⇒ 4(2^{a})- 3(3^{b}) = 5

⇒ 4x - 3y = 5 ...(iv)

Then,

By adding both the equation obtained from (i) & (ii)

i.e., 3 × (i) + (ii)

⇒ 3(x + y) + (4x - 3y) = 3(17) + 5

⇒ 3x + 3y + 4x - 3y = 51 + 5

⇒ 7x = 56

⇒ x = 8,.

⇒ 2^a = 8

⇒ 2^a = 2^3

•°• a = 3,.

_

By substituting value of x in (iii),

We get,

⇒ x + y = 17

⇒ 8 + y = 17

⇒ y = 17 - 8

⇒ y = 9,

⇒ 3^b = 9

⇒ 3^b = 3^2

•°• b = 2

 \red{.°.a = 3 , b = 2}


sivaprasath: what is the difference between my answer and your answer ?seems to be same,.
Similar questions