Physics, asked by gauravgoyal67, 9 months ago

A×B = √3 A.B, then the value of |A+B| is​

Answers

Answered by viajaypkawle67
2

Explanation:

ANSWER

We know that,

A×B=ABsinθ

Also, A.B=ABcosθ

Given : ∣A×B∣=

3

A.B

Using ∣A×B∣=∣A∣∣B∣sinθ

We get ∣A×B∣=ABsinθ

A.B=∣A∣∣B∣cosθ

∴ ABsinθ=

3

ABcosθ

tanθ=

3

⟹θ=60

o

Now (A+B)

2

=A

2

+B

2

+2A.B

=A

2

+B

2

+2ABcosθ

=A

2

+B

2

+2AB×

2

1

=A

2

+B

2

+AB

or ∣A+B∣=(A

2

+B

2

+AB)

1/2

Answered by Decapod
1

Answer:

(A² + B² + AB)^1/2

Explanation:

We know,

X̄ × Ȳ = XY sinθ n̂

=> | X̄ × Ȳ | = XY sinθ

& | X̄ · Ȳ | = XY cosθ

Therefore,

AB sinθ = √3 AB cosθ (from qs)

=> sinθ = √3 cosθ

=> tanθ = √3

=> θ = arctan(√3) = π/3ᶜ

Again,

| X̄ + Ȳ | = √(X² + Y² + 2XYcosθ)

=> | A vec + B vec | = √(A² + B² + 2ABcos(π/3))

= √(A² + B² + 2AB(1/2)) = √(A² + B² + AB).

Similar questions