Math, asked by rajendrarajpoot4, 11 months ago

(a - b)3 = a' – b3 – 3 ab (a - b)​

Answers

Answered by mysticd
0

Answer:

(a-b)³ = a³-b³-3ab(a-b)

Step-by-step explanation:

(a-b)³ = (a-b)(a-b)²

= (a-b)(-2ab+)

= a(a²-2ab+b²)-b(a²-2ab+b²)

= -2a²b+ab²-a²b+2ab²-b³

= -3a²b+3ab²-b³

= -b³ -3a²b+3ab²

= -b³-3ab(a-b)

Therefore,

(a-b)³ = a³-b³-3ab(a-b)

Answered by vilnius
2

(a - b)³ = a³ – b³ – 3 ab (a - b)​

Step-by-step explanation:

(a - b)³ = a³ – b³ – 3 ab (a - b)​

To prove: L.H.S. = R.H.S.

L.H.S. = (a - b)³

(a - b)  (a - b)  (a - b)

(a - b)  (a - b)²

Substituting the formula:  (a - b)² = (a² + b² - 2ab)

(a - b)  (a² + b² - 2ab)

(a² × a) - (a² ×  b) + (b² × a) - (b² × b) - (2ab × a ) + (2ab × b)

a³ - a²b + ab² - b³ - 2a²b + 2ab²

Grouping the same variables together:

a³ - b³ - a²b - 2a²b + ab² + 2ab²

a³ - b³ - 3a²b + 3ab²

Taking out -3ab as common:

a³ – b³ – 3 ab (a - b)​

∴ L.H.S. = R.H.S.

(a - b)³ = a³ – b³ – 3 ab (a - b)​

Learn more:

Factorise the following

brainly.in/question/6734488

brainly.in/question/12938195

Similar questions