(a - b)3 = a' – b3 – 3 ab (a - b)
Answers
Answer:
(a-b)³ = a³-b³-3ab(a-b)
Step-by-step explanation:
(a-b)³ = (a-b)(a-b)²
= (a-b)(a²-2ab+b²)
= a(a²-2ab+b²)-b(a²-2ab+b²)
= a³-2a²b+ab²-a²b+2ab²-b³
= a³-3a²b+3ab²-b³
= a³-b³ -3a²b+3ab²
= a³-b³-3ab(a-b)
Therefore,
(a-b)³ = a³-b³-3ab(a-b)
•••♪
(a - b)³ = a³ – b³ – 3 ab (a - b)
Step-by-step explanation:
(a - b)³ = a³ – b³ – 3 ab (a - b)
To prove: L.H.S. = R.H.S.
L.H.S. = (a - b)³
(a - b) (a - b) (a - b)
(a - b) (a - b)²
Substituting the formula: (a - b)² = (a² + b² - 2ab)
(a - b) (a² + b² - 2ab)
(a² × a) - (a² × b) + (b² × a) - (b² × b) - (2ab × a ) + (2ab × b)
a³ - a²b + ab² - b³ - 2a²b + 2ab²
Grouping the same variables together:
a³ - b³ - a²b - 2a²b + ab² + 2ab²
a³ - b³ - 3a²b + 3ab²
Taking out -3ab as common:
a³ – b³ – 3 ab (a - b)
∴ L.H.S. = R.H.S.
(a - b)³ = a³ – b³ – 3 ab (a - b)
Learn more:
Factorise the following
brainly.in/question/6734488
brainly.in/question/12938195