(a-b)3+(b-c)3+(c-a)3
Answers
Answered by
98
Hi,
We know the identity
********************************************
i) x ^3 + y^3 + y^3 = (x + y + z)
(x^2 + y ^2 + z^2 - xy - yz - zx ) + 3xyz
* If x + y + z = 0
then
x^3 + y^3 + z^3 = 3xyz ------(1)
*******************************************
Now according to the problem ,
Let
x = a - b ;
y = b- c ;
z = c - a ;
x + y + z = a - b + b - c + c - a = 0
Therefore,
Using ( 1 )
x ^3 + y ^3 + z ^3 = 3xyz
( a - b )^3 + ( b - c ) ^3 + ( c - a )^3
= 3( a - b ) ( b - c ) ( c - a )
I hope this will useful to you.
***
We know the identity
********************************************
i) x ^3 + y^3 + y^3 = (x + y + z)
(x^2 + y ^2 + z^2 - xy - yz - zx ) + 3xyz
* If x + y + z = 0
then
x^3 + y^3 + z^3 = 3xyz ------(1)
*******************************************
Now according to the problem ,
Let
x = a - b ;
y = b- c ;
z = c - a ;
x + y + z = a - b + b - c + c - a = 0
Therefore,
Using ( 1 )
x ^3 + y ^3 + z ^3 = 3xyz
( a - b )^3 + ( b - c ) ^3 + ( c - a )^3
= 3( a - b ) ( b - c ) ( c - a )
I hope this will useful to you.
***
Answered by
11
Answer
Hope this answer helps you
Attachments:
Similar questions