A+b=45 prove that (1+tana)(1+tanb)=2.Then what is the value of tan(45/2)
Answers
Answer:
(A+B)=45
multiply both sides with tan
so, tan(A+B)=tan45
tanA+tanB/1-tanAtanB=1
tanA + tanB = 1- tanAtanB
tanA +tanB + tanAtanB = 1...(1)
Now,given
(1+tanA)(1+tanB)=2
1+tanB+tanA+ tanAtanB=2
tanA+anB+tanAanB=2-1
TanA+tanB+tanAtanB=1...(2)
Equation 1and 2 are equal
tan(45/2)=1
Given, A + B = 45°
⇒ tan(A + B) = tan45°
⇒ (tanA + tanB)/(1 - tanAtanB) = 1
⇒ tanA + tanB = 1 - tanAtanB
⇒ tanA + tanB + tanAtanB = 1
∴ (1 + tanA)(1 + tanB)
⇒ 1 + tanB + tanA + tanAtanB
⇒ 1 + 1
⇒ 2 proved
As we know, tan45° = 1, let tan(45/2)° be x.
=> 2x/(1 - x²) = 1
=> x² + 2x - 1 = 0
Using quadratic formula :
=> x = (- 2 ± √(2² - 4(-1)(1)) )/2(1)
=> x = (- 2 ± √8)/2 = (- 2 ± 2√2)/2
=> x = - 1 + √2 , as - 1 - √2 is -ve.
tan(45/2)° = √2 - 1