a+b+ab=8,b+c+bc=15,a+c+ac=35
Find a+b+c+ab+bc+ac
Answers
HELLO DEAR,
GIVEN:-
a + b + ab = 8
b + a(1 + b) = 8
-------( 1 )
b + c + bc = 15
b + c(1 + b) = 15
------( 2 )
a + c + ac = 35
From----------( 1 ) &-----------( 2 )
so, b = 1 , b = -3[neglect]
because a , b , c ,are positive,
now,
from----------( 1 )
a = (8 - b)(1 + b)
a = (8 - 1)(1 + 1)
a = 7/2
from-----------( 2 )
c = (15 - b)(1 + b)
c = (15 - 1)(1 + 1)
c = 14/2
c = 7
thus, the value of "a + b + c + abc" is
7/2 + 1 + 7 + (7 * 7/2 * 1)
{(7 + 2 + 14 )/2 + 49/2}
(23/2 + 49/2)
(23 + 49)/2
72/2
36
HENCE, the value of (a + b + c + abc) = 36
I HOPE ITS HELP YOU DEAR,
THANKS
Answer:
Step-by-step explanation:
=> {cosθ(1 + sinθ) + cosθ(1 - sinθ)}/(1 - sinθ)(1 + sinθ) = 4
=> {cosθ + cosθ.sinθ + cosθ - cosθ.sinθ}/(1 - sin²θ) = 4
=> 2cosθ/cos²θ = 4 [ we know, sin²x + cos²x = 1 so, (1 - sin²θ) = cos²θ]
=> 2/cosθ = 4
=> cosθ = 1/2 = cos60°
hence, in 0 < θ < 90° , θ = 60°
now, if given equation is not defined.
(1 - sinθ) = 0
in 0 < θ < 90° , sinθ = 1 at 90°
hence, equation is undefined at θ = 90°
[ note : one more case for undefined, (1 + sinθ) = 0 , but in 0 < θ < 90° it's not possible. thars why I didn't mention it above]