Math, asked by ironman777, 1 year ago

a, b are roots of the quadratic polynomial p(x) = x^2 - (k+6) +2 (2k-1). Find the value of k, if a+b = Ab.

Answers

Answered by Mritun
5
here it is!. .hope u get it!!....
Attachments:

ironman777: yeah
ironman777: but option is not coming
ironman777: :)
ironman777: :)..
ironman777: :)
ironman777: :)
ironman777: :)
ironman777: :)
Answered by vikashpatnaik2009
3

Answer:

Let α  and  β are  zeroes  of  the  polynomial  = x²  - (k  +  6)x  +  2(2k  –1).

On comparing with ax²+bx+c=0

a= 1, b= -( k+6) , c = 2(2k  –1)

Sum of zeroes (α+β)= -b/a = -(-(k+6))/1

α+β= (k+6)…………....(1)

Product of zeros(α.β)= c/a = 2(2k  –1)/1

α.β= c/a = 4k -2…………(2)

Given:  (α+β) = ½(αβ )

(k+6) = ½( 4k -2)

[From eq 1 & 2]

2 (k +6 )= 4k -2

2k +12 = 4k -2

2k -4k = -2 -12

-2k = -14

k = 14/2

k = 7

Hence, the value of k is 7

HOPE THIS WILL HELP YOU...

Similar questions