Math, asked by bajaj1991, 8 months ago

(a+b):(b+c):(c+a)=6:7:8 and a+b+c=14 then what is c

Answers

Answered by BrainlyIAS
53

Answer

  • Value of c is 6

Given

  • (a+b) : (b+c) : (c+a) = 6 : 7 : 8
  • a + b + c = 14

To Find

  • Value of c

Solution

Let ,

a + b = 6k ... (1)

b + c = 7k ... (2)

c + a = 8k ... (3)

Add (1) , (2) & (3) .

⇒ ( a + b ) + ( b + c ) + ( c + a ) = 6k + 7k + 8k

⇒ 2a + 2b + 2c = 21k

⇒ 2 ( a + b + c ) = 21k

⇒ 2 (14) = 21k [ ∵ given ]

⇒ 28 = 21k

⇒ 21k = 28

⇒ k = 28/21

k = 4/3 ... (4)

Given ,

a + b + c = 14

⇒ c = 14 - ( a + b )

⇒ c = 14 - 6k   [ From (1) ]

⇒ c = 14 - 6(4/3)    [ From (4) ]

⇒ c = 14 - 8

c = 6

Answered by BrainlyPopularman
14

GIVEN :

  \\ \:  \: { \huge{.}} \:  \:  { \bold{(a+b):(b+c):(c+a) = 6:7:8 }} \\

  \\ \:  \: { \huge{.}} \:  \:  { \bold{a+b+c=14}} \\

TO FIND :

Value of 'c' = ?

SOLUTION :

  \\ \implies { \bold{(a+b):(b+c):(c+a) = 6:7:8 }} \\

• We should write this as –

  \\ \dashrightarrow { \bold{(a+b) = 6x}} \\

  \\ \dashrightarrow { \bold{(b+c) = 7x}} \\

  \\ \dashrightarrow { \bold{(c+a) = 8x}} \\

• Now second condition –

  \\ \implies { \bold{a+b+c=14}} \\

• We should write this as –

  \\ \implies { \bold{2(a+b+c)=2 \times 14}} \\

  \\ \implies { \bold{2a+2b+2c=28}} \\

  \\ \implies { \bold{(a + b) + (b + c) + (c + a)=28}} \\

• Put the values –

  \\ \implies { \bold{(6x) + (7x) + (8x)=28}} \\

  \\ \implies { \bold{21x=28}} \\

  \\ \implies { \bold{x=  \cancel\dfrac{28}{21}}} \\

  \\ \implies \large{ \boxed{ \bold{x= \dfrac{4}{3}}}} \\

▪︎ So that –

  \\ \dashrightarrow { \bold{(a+b) = 8}} \\

  \\ \dashrightarrow { \bold{(b+c) =  \dfrac{28}{3}}} \\

  \\ \dashrightarrow { \bold{(c+a) =  \dfrac{32}{3}}} \\

• Now Let's find 'c' –

  \\ \implies { \bold{a+b+c=14}} \\

• Put the value of (a+b)

  \\ \implies { \bold{8+c=14}} \\

  \\ \implies { \bold{c=14-8}} \\

  \\ \dashrightarrow \large { \boxed{ \bold{c = 6}}} \\

Similar questions