Math, asked by prasadpndt, 10 months ago

(a^b)*c=1000; a+b=c; a-b=c/4.
find value of a,b,c.

Answers

Answered by prajwal1697
0

 \huge \underline \bold \green{QUESTION}:

(a^b)*c=1000; a+b=c; a-b=c/4.

find value of a,b,c.

__________________________

 \huge \underline \bold \red{SOLUTION}:

lets \: solve \: the \: two \: equation \: </p><p> \\ a + b = c \\ a - b =  \frac{c}{4}  \\ if \: we \: add \:  two  \: equations \: we \: get \\ 2a = c +  \frac{c}{4}  \\ a =  \frac{5c}{8} \:  \:  \:  \:  \:  \:  \:  \: (1)  \\ now \: subtract \: the  two \: equations \:  \\ we \: get \\ 2b =  \frac{3c}{4}  \\ b =  \frac{3c}{8}   \:  \:  \:  \:  \:  \: (2)\\  \\ from \: one  \: and \:  two  \: we \:  can get \:  \\ a \: complete \: equation \: with \: c \\  \: if \:  we  \: substitute \: in \\  {a}^{b}  \times c = 1000 \\  =  &gt;  { \frac{5c}{8} }^{ \frac{3c}{8} }  \times c = 1000

Similar questions