a+b+c=15 and ab+bc+ca=25, find a^2+b^2+c^2
Answers
Answered by
0
Answer:
175
Step-by-step explanation:
We have (a+b+c)2=a2+b2+c2+2(ab+bc+ca). So,
152=a2+b2+c2+2(25)
225=a2+b2+c2+50
∴a2+b2+c2=225−50=175
Answered by
0
Answer:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
152 = a^2 + b^2 + c^2 + 2(25)
225 = a^2 + b^2 + c^2 + 50
a^2 + b^2 + c^2 = 225 - 50
a^2 + b^2 + c^2 = 175
Similar questions