A+B+C=180 degree then tan^2 A\2+tan^2B/2+tanC/2=?
Answers
Answer:
Step-by-step explanation:
A+B+C = pi
so A/2 + B/2 + C/2 = pi/2
or A/2 + B/2 = (pi/2- C/2)
take tan of both sides
tan (A/2 + B/2) = tan (pi/2-C/2) = cot C/2 = 1/ tan C/2
or (tan A/2 + tan B/2)/(1- Tan A/2 tan B/2) = 1/tan C/2
or tan C/2 tan A/2 + tan C/2 tan B/2 = 1 - tan A/2 tan B/2
or tan A/2 tan B/2 + tan B/2 tan C/2 + tan A/2 tan C/2 = 1
proved
Hope this answers your question
Please mark as brainliest :)
Given : A+B+C=180°
To find : Prove that ( Tan²(A/2) + Tan²(B/2) + Tan²(c/2) ≥ 1
Solution:
( Tan (A/2) - Tan(B/2))² + ( Tan (B/2) - Tan(C/2))² + (Tan (C/2) - Tan(A/2))² ≥ 0
=> 2(Tan²(A/2) + Tan²(B/2) + Tan²(C/2) ) - 2(Tan(A/2)Tan(B/2) + Tan(B/2)Tan(c/2) + Tan(C/2)Tan(A/2) ≥ 0
=> 2(Tan²(A/2) + Tan²(B/2) + Tan²(C/2) ) ≥ 2(Tan(A/2)Tan(B/2) + Tan(B/2)Tan(c/2) + Tan(C/2)Tan(A/2)
=> (Tan²(A/2) + Tan²(B/2) + Tan²(C/2) ) ≥ (Tan(A/2)Tan(B/2) + Tan(B/2)Tan(c/2) + Tan(C/2)Tan(A/2) Eq1
A + B + C = 180°
=> A/2 + B/2 + C/2 =90°
=> A/2 + B/2 = (90°- C/2)
Tan (A/2 + B/2) =Tan(90°--C/2)
Tan(90°--C/2) = cot C/2 = 1/ tan C/2
=> (tan A/2 + tan B/2)/(1- Tan A/2 tan B/2) = 1/tan C/2
=> tan C/2 tan A/2 + tan C/2 tan B/2 = 1 - tan A/2 tan B/2
=> tan A/2 tan B/2 + tan B/2 tan C/2 + tan A/2 tan C/2 = 1
using this in eq1
=> (Tan²(A/2) + Tan²(B/2) + Tan²(C/2) ) ≥ 1
QED
Hence proved
Learn more:
If sec theta + tan theta = p, show that sec theta - Brainly.in
https://brainly.in/question/2142440
in triangle abc prove that B minus C cot a by 2 + c minus A cot B by 2 ...
https://brainly.in/question/12878751