(a+b+c)^2 =
ans me and
a^3-b^3=
Answers
Answer:
- (a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
- a³ -b³ = (a – b)(a² + b² + ab)
Explanation:
☆ The proof of the identities is as follows:
1️⃣To Prove: (a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
Proof:
⋆ LHS
= (a + b + c )²
= (a + b + c ) × (a + b + c )
= a (a + b + c ) + b (a + b + c ) + c (a + b + c ) [Distributive property]
= (a×a) + (a×b) + (a×c) + (b×a)+ (b×b) + (b×c) + (c×a) + (c×b) + (c×c)
= a² + ab + ac + ba + b² + bc + ca + cb + c²
= a² + b² + c² + (ab+ ab) + (bc + bc) + (ca + ca)
= a² + b² + c² + 2ab + 2bc + 2ca = RHS
Hence, LHS = RHS, proved.
2️⃣To prove: a³ -b³ = (a – b)(a² + b² + ab)
Proof:
⋆ RHS
= (a – b)(a² + b² + ab)
= a (a² + b² + ab) – [b (a² + b² + ab)] [Distributive property]
= (a × a²) + ( a× b² ) + (a × ab) – [ (b × a²) + (b × b²) + ( b × ab)
= a³ + ab² + a²b – ( a²b + b³ + ab² )
= a³ + ab² + a²b –a²b –b³ – ab²
= a³ – b³ + ab² –ab² + a²b – a²b
= a³ – b³ = LHS
Hence, LHS = RHS, proved.
Hope you understood.
Thank You.