Math, asked by simonashahoon83, 1 month ago

A+B+C =2S , then sin S- sin( S-A) - sin (S-B) - sin (S-C) =​

Attachments:

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \purple{ \bold{ \mathbb{ A + B + C = 2S}}}

Now,

 \sin(S)  -  \sin(S -A)  - \sin(S - B)  - \sin(S - C)\\

 = 2\cos \bigg( \frac{S +S - A}{2} \bigg)\sin \bigg ( \frac{ S -  S  + A}{2} \bigg)  - 2\sin \bigg( \frac{2S - B - C}{2} \bigg)\cos\bigg( \frac{  C -  B }{2} \bigg) \\

 = 2\cos \bigg( \frac{2S  - A}{2} \bigg)\sin \bigg ( \frac{ A}{2} \bigg)  - 2\sin \bigg( \frac{2S - B - C}{2} \bigg)\cos\bigg( \frac{  C -  B }{2} \bigg) \\

= 2\cos \bigg( \frac{B + C}{2} \bigg)\sin \bigg ( \frac{ A}{2} \bigg)  - 2\sin \bigg( \frac{ A }{2} \bigg)\cos\bigg( \frac{  C -  B }{2} \bigg) \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{ \cos \bigg( \frac{B + C}{2} \bigg)-\cos\bigg( \frac{  C -  B }{2} \bigg) \bigg \} \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{  - 2\sin \frac{1}{2} \bigg( \frac{B + C}{2}  + \frac{  C -  B }{2} \bigg) \sin \frac{1}{2} \bigg( \frac{B + C}{2}   -  \frac{  C -  B }{2} \bigg) \bigg \} \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{  - 2\sin \frac{1}{2} \bigg( \frac{B + C  +  C -  B }{2} \bigg) \sin \frac{1}{2} \bigg( \frac{B + C   -   C  +   B }{2} \bigg) \bigg \} \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{  - 2\sin \frac{1}{2} \bigg( \frac{ C  +  C  }{2} \bigg) \sin \frac{1}{2} \bigg( \frac{B   +   B }{2} \bigg) \bigg \} \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{  - 2\sin \frac{1}{2} \bigg( \frac{2 C   }{2} \bigg) \sin \frac{1}{2} \bigg( \frac{2B   }{2} \bigg) \bigg \} \\

= 2 \sin \bigg ( \frac{ A}{2} \bigg)   \bigg \{  - 2\sin  \bigg( \frac{ C   }{2} \bigg) \sin \bigg( \frac{B   }{2} \bigg) \bigg \} \\

=  - 4 \sin \bigg ( \frac{ A}{2} \bigg)  \sin \bigg( \frac{B   }{2} \bigg) \sin  \bigg( \frac{ C   }{2} \bigg)  \\

Similar questions