(a+b+c)^3 = to what please answer with steps
Answers
Answered by
3
(x+y)³ = x³ +y ³+3x²y+3xy²
x= a+b
y = c
(a+b+c)³ = (a+b)³+c³+3(a+b)²(c)+3(a+b)(c)²
= a³ + b³ + c³ + 3a²b+ 3ab² + 3(a²+b²+2ab)(c) + 3(a+b)(c)²
= a³ + b³ + c³ + 3a²b+ 3ab² + 3a²c+3b²c+6abc + 3ac²+3bc²
= a³ + b³ + c³ + 3a²b+ 3a²c+3ab²+3ac² + 3b²c+ 3bc² +6abc
x= a+b
y = c
(a+b+c)³ = (a+b)³+c³+3(a+b)²(c)+3(a+b)(c)²
= a³ + b³ + c³ + 3a²b+ 3ab² + 3(a²+b²+2ab)(c) + 3(a+b)(c)²
= a³ + b³ + c³ + 3a²b+ 3ab² + 3a²c+3b²c+6abc + 3ac²+3bc²
= a³ + b³ + c³ + 3a²b+ 3a²c+3ab²+3ac² + 3b²c+ 3bc² +6abc
Answered by
0
(a+b+c)^3= (a+b+c)(a+b+c)(a+b+c)
= (a+b+c)^2 *(a+b+c)
= a^2+ b^2+ c^2+2ab+2bc+2ca (a+b+c)
=[a^3+ab^2+ac^2+2(a^2)b+2abc+2(a^2)c] + [ba^2+b^3+cb^2+
= (a+b+c)^2 *(a+b+c)
= a^2+ b^2+ c^2+2ab+2bc+2ca (a+b+c)
=[a^3+ab^2+ac^2+2(a^2)b+2abc+2(a^2)c] + [ba^2+b^3+cb^2+
Similar questions