Math, asked by ayushman1393, 11 months ago

A+b+c=6., a3+b3+c3-3abc=126
ab+bc+ca=?

Answers

Answered by upadanrtm2020
6

Application of Algebraic identity

Answer: when a + b + c = 6 and a³+b³+c³-3abc = 126  , value of ab + bc + ca = 5

Explanation:

Given that a + b + c = 6 and a³+b³+c³-3abc=126

need to determine ab + bc + ca .

lets first use algebraic identity of a³+b³+c³-3abc  which is as follows

a³+b³+c³-3abc  = (a + b + c ) ( a² + b² + c² - ab - bc - ca )

on substituting a³+b³+c³-3abc = 126 and (a + b + c ) = 6  in above identity , we have

126 = (6) ( a² + b² + c² - ab - bc - ca)

=> 126/6 =  a² + b² + c² - ab - bc - ca

=> 21 = a² + b² + c² - ab - bc - ca

=> ab + bc + ca = a² + b² + c² - 21   ----------------eq(1)

Now we do not have value of a² + b² + c²  but we have a+b+c=6 .

so we will be using following algebraic identity to get a² + b² + c² that is

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

On substituting a + b + c = 6 in above identity we get

(6)² = a² + b² + c² + 2ab + 2bc + 2ca

=> 36 -2ab - 2bc - 2ca = a² + b² + c²

=> a² + b² + c² = 36 -2ab - 2bc - 2ca

On substituting a² + b² + c² = 36 -2ab - 2bc - 2ca in eq(1) we get

ab + bc + ca = 36 -2ab - 2bc - 2ca - 21

=> ab + 2ab + bc + 2bc + ca + 2ca = 36 - 21

=> 3ab + 3bc + 3ca = 15

=> 3 ( ab + bc + ca ) = 15

=> ab + bc + ca = 15/3 = 5

=> ab + bc + ca = 5

Hence when a + b + c = 6 and a³+b³+c³-3abc = 126  , value of ab + bc + ca = 5.

#answerwithquality

#BAL

Answered by shavanmbharti853202
0

Step-by-step explanation:

I think this may help you....

Attachments:
Similar questions