A+b+c=8 & ab+bc+ca=20 then find a^3+b^3+c^3-3abc
Answers
Answered by
5
By property
(a+b+c)^2=(a^2+b^2+c^2)+2(ab+bc+ca)
given
a+b+c=8
ab+bc+ca=20
putting value
(8)^2=(a^2+b^2+c^2)+2(20)
64-40=(a^2+b^2+c^2)
24=(a^2+b^2+c^2)
now by this property
a^3 + b^3 + c^3 - 3abc= (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
= (8)(24-(20)
= -32
Similar questions