Math, asked by Amanshaily1471, 1 year ago

A+b+c=8 & ab+bc+ca=20 then find a^3+b^3+c^3-3abc

Answers

Answered by kharshit801
5

By property  

                      (a+b+c)^2=(a^2+b^2+c^2)+2(ab+bc+ca)

                         

given

          a+b+c=8

         ab+bc+ca=20

putting value  

(8)^2=(a^2+b^2+c^2)+2(20)

64-40=(a^2+b^2+c^2)

24=(a^2+b^2+c^2)

now by this property  

 a^3 + b^3 + c^3 - 3abc= (a+b+c)(a^2+b^2+c^2-ab-bc-ca)

                                     = (8)(24-(20)

                                  = -32


Similar questions