a+b+c=9 and ab+ bc+ ca=26 then find the value of a^2+b^2+c^2
Answers
Answered by
10
We know that
(a+b+c)^2 = a^2 +b^2 +c^2 +2ab+2bc+2ca
(a+b+c)^2=a^2+b^2+c^2 +2(ab+bc+ca)
Now,
We have
a+b+c=9
ab+bc+ca=26
So,
9^2 = a^2 + b^2 +c^2 +2(26)
81=a^2 +b^2 +c^2 + 52
81-52 =a^2 + b^2 + c^2
29 = a^2 + b^2 + c^2
(a+b+c)^2 = a^2 +b^2 +c^2 +2ab+2bc+2ca
(a+b+c)^2=a^2+b^2+c^2 +2(ab+bc+ca)
Now,
We have
a+b+c=9
ab+bc+ca=26
So,
9^2 = a^2 + b^2 +c^2 +2(26)
81=a^2 +b^2 +c^2 + 52
81-52 =a^2 + b^2 + c^2
29 = a^2 + b^2 + c^2
Similar questions
Accountancy,
7 months ago
Business Studies,
7 months ago
Environmental Sciences,
1 year ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago