a+b+c=9and ab+bc+ca=23 find a²+b²+c²
Answers
Answered by
7
a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
a+b+c= 9 (given)
ab+ bc + ca = 23 (given)
⇒ a³+b³+c³- 3abc = 9 (a²+b²+c²- 23) ... (1)
(a+b+c)²= a²+b²+c²+ 2ab+ 2bc+ 2ca
92= a²+b²+c²+ 2(ab+bc+ca)
81= a²+b²+c²+ 2(23)
81 = a²+b²+c²+ 46
a²+b²+c²= 35
from eqation 1 we get,
a³+b³+c³- 3abc
= 9 (35-23)
= 108
Answered by
4
( a + b + c) ^2 = a^2 + b ^2 + c ^2 + 2ab + 2 bc + 2 ca
( 9)^2 = a ^2 + b ^2 + c ^2 + 2 ( ab + bc + ca)
SUBSTITUTING THE VALUES ,
81 = a^2 + b ^ 2 + c^2 + 2 (23)
81 - 46 = a^2 + b ^2 + c^2
SO ,
a^2 + b ^2 + c ^2 = 35 .............ANS
( 9)^2 = a ^2 + b ^2 + c ^2 + 2 ( ab + bc + ca)
SUBSTITUTING THE VALUES ,
81 = a^2 + b ^ 2 + c^2 + 2 (23)
81 - 46 = a^2 + b ^2 + c^2
SO ,
a^2 + b ^2 + c ^2 = 35 .............ANS
Similar questions