a+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abc
Answers
Answered by
1
Step-by-step explanation:
a+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abca+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abca+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abca+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abca+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abca+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abc
Answered by
5
Answer:
To Prove:a+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)=abc
Proof:
a+b+c/(a^-1×b^-1)+(b^-1×c^-1)+(c^-1×a^-1)
a+b+c/[(ab)^-1]+[(bc)^-1]+[(ca)^-1]
a+b+c/(1/ab)+(1/bc)+(1/ca)
a+b+c/(c+a+b/abc)
a+b+c/(a+b+c/abc)
a+b+c÷(a+b+c/abc)
a+b+c×abc/a+b+c
abc.
LHS = RHS
proved
Similar questions