a(b-c)+b(c-a)+c(a-b) has equal roots .
Prove that 1/a+1/b=2/c
Answers
Answered by
0
xkggksskgsksksgkgk and we should see again for all your help with ß
Answered by
0
Answer:
Proved
Step-by-step explanation:
a(b-c)+b(c-a)+c(a-b) has equal roots .
Prove that 1/a+1/b=2/c
a(b-c)x²+b(c-a)x +c(a-b) has equal roots
so
(b(c-a))² = 4a(b-c)c(a-b)
=> b²(c² + a² - 2ac) = 4ac (ab + bc - ac - b²)
=> b² (c² + a² - 2ac) + 4acb² = 4acb(a+c) - 4(ac)²
=> b² (c² + a² - 2ac + 4ac) = 4acb(a+c) - (2ac)²
=> b² (c² + a² + 2ac) - 4acb(a+c) + (2ac)² = 0
=> b² (c + a)² - 4acb(c+a) + (2ac)² = 0
=> (b(c+a))² - 2×2ac×b(c+a) + (2ac)² = 0
=> (b(c+a) - 2ac)² = 0
=> b(c+a) -2ac = 0
=> bc + ba = 2ac
Dividing by abc both sides
=> 1/a + 1/c = 2/b
QED
Similar questions