Math, asked by Anonymous, 1 year ago

A B C D E + A B C D E + A B C D E = D E O A B C Find the digits representated by the letters....pls helppppp

Answers

Answered by saina16
1
12345 + 12345+12345= 4515123 I think this one is the answer

Anonymous: how come
Anonymous: but its wrng sry
Answered by SnehaG
1
\color{blue}\huge\bold\star\underline\mathfrak{Bonjour\:Mate}\star

\color{violet}\huge\bold\star\underline\mathcal{Here\:Is\:Ur\:AnSweR}\star

\color{red}\huge\bold\star\underline\mathfrak{ComPlicateD RidDler}\star

» ABCDE + ABCDE + ABCDE = DEOABC

» 3(ABCDE) = DEOABC

» since, the ABCDE are 5 digits

let's replace it as

» 3(5)ABCDE = DEOABC

» 15 ABCDE = DEOABC

“O” is 15th enligh alphabet.
Hence,

» OABCDE = DEOABC

in product, we can write a×b×c as c×b×a also.

so,

» OABCDE = DEOABC

» DEOABC = DEOABC

\marquee{Hence\:Proved}\marquee

the digits are

» ABCDE + ABCDE + ABCDE = DEOABC

»12345 + 12345 + 12345 = 45(15)123

» 3(12345) = (3×5)12345

»\fraction{3}/{3} (12345) = 5(12345)

» 1(12345) = 5(12345)

» so,the number is 455123

__________
or
__________

the simple anSweR is

» 45(15)123
» 4515123

as,
A » 1
B » 2
C » 3
D » 4
E » 5
O » 15



\color{green}\huge\bold\star\underline\mathfrak{thanks}\star

Anonymous: u have to find the digits not to prove
Anonymous: pls tell
Similar questions