নির্দিষ্টকৃত কাজ: এ্যাসাইনমেসেজ
A
সৃজনশীল প্রশ্ন:
১।
লদ
B
D
C C
চিত্রে, BA ও CE রেখাদ্বয় পরস্পর সমান্তরাল।
( ক) Z BAC ও ZACE এর মধ্যে সম্পর্ক লিখ।
দেখাও যে, ZBAC +ZABC =
ACD।
(গ) প্রমাণ কর যে, ZABC +ZBCE = দুই সমকোণ।
Answers
Answer:
please write in English or Hindi
then I will try to help you
please mark as brainliest and follow me and give 30 ❤️ thanks.....
Explanation:
Explanation:
\begin{gathered}\begin{gathered}\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}\end{gathered}\end{gathered}
Question:−
The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}\end{gathered}\end{gathered}
Given:−
The measures of two adjacent angles of a parallelogram are in the ratio 3:2.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}\end{gathered}\end{gathered}
ToFind:−
Find the measure of each of the angles of the parallelogram.
\begin{gathered}\begin{gathered}\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}\end{gathered}\end{gathered}
Solution:−
\boxed{ \sf \blue{ suppose\: the \: angles \: be \: 2x \: and\: 3x }}
supposetheanglesbe2xand3x
\boxed{ \sf \orange{ we \: have \: adjacent \: angles \: of \: a \: parallelogram \: = 180}}
wehaveadjacentanglesofaparallelogram=180
\begin{gathered}\begin{gathered}\begin{gathered}\\ \sf \underline{ \green{putting \: all \: values : }}\end{gathered}\end{gathered}\end{gathered}
puttingallvalues:
\begin{gathered}\begin{gathered}\begin{gathered}\: \\ \sf \to \: 3x + 2 x = 180\: \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:5x = 180 \\ \\ \: \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \frac{180}{5} \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \:x \: = \cancel{ \frac{180}{5} } \\ \\ \sf \to \: \: \: \: \: \: \: \: \: \: \purple{x = 36}\\\\\end{gathered}\end{gathered}\end{gathered}
→3x+2x=180
→5x=180
→x=
5
180
→x=
5
180
→x=36
\begin{gathered}\begin{gathered}\begin{gathered}\sf \to \: 3x \\ \sf \to \: 3 \times 36 \\ \sf \to \red{108 }\\ \\ \\ \sf \to \: 2x \\ \sf \to \: 2 \times 36 \\ \sf \to \orange{72} \\\end{gathered}\end{gathered}\end{gathered}
→3x
→3×36
→108
→2x
→2×36
→72
\sf \large\underline{ \blue{verification }}
verification
\begin{gathered}\begin{gathered}\begin{gathered}\\ \\ \sf \to 3x + 2x = 180 \\ \\ \sf \to \: 3 \times 36 +2 \times 36 = 180 \\ \\ \sf \to \: 108 + 72 = 180 \\ \\ \sf \to \:180 = 180 \\ \\ \large \underline{ \pink{ \sf \: hence \: verified}} \huge \dag\end{gathered}\end{gathered}→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†\end{gathered}
→3x+2x=180
→3×36+2×36=180
→108+72=180
→180=180
henceverified
†
→3x+2x=180→3×36+2×36=180→108+72=180→180=180henceverified†