A+B=pie/4 prove that (1+tanA)(1+tanB)
Answers
Answered by
2
Just take tan on both sides and use formula tan(A+B)
Answered by
4
A+B = π /4 =45°
TAKE TAN TO BOTH SIDES
Tan(A+B )= Tan45°
tanA+tanB/1-tanAtanB =1
1-tanAtanB=tanA+tanB
1= tanA + tanB + tanA.tanB
1+1=1+tanA+tanB+tan.AtanB
2=(1+tanA)(1+tanB)
TAKE TAN TO BOTH SIDES
Tan(A+B )= Tan45°
tanA+tanB/1-tanAtanB =1
1-tanAtanB=tanA+tanB
1= tanA + tanB + tanA.tanB
1+1=1+tanA+tanB+tan.AtanB
2=(1+tanA)(1+tanB)
adityakjha24:
hope this will help... if any query feel free to ask
Similar questions