(a-b) whole square = (a+b) whole square - 4ab
Answers
(a-b)² = a² + b² -2ab
(a-b)² = a² + b² - 2ab - 2ab + 2ab
(adding 2ab and -2ab)
(a-b)² = a² + b² +2ab -4ab
(a-b)² = (a+b)² -4ab.
hence proved...
Given:
An Equation ( a - b ) ² = ( a + b )² - 4ab.
To Find:
The proof of the above equation.
Solution:
The given problem can be solved using the formulae of (a+b)² and (a-b)².
1. The given equation is (a + b)² = (a + b)² - 4ab.
2. The expansions of the (a - b)² and (a + b)² are,
- (a - b)² = a² + b² - 2ab.
- (a + b)² = a² + b² + 2ab.
3. The expansion of (a - b)² can also be written as,
=> (a - b)² = a² + b² - 2ab,
=> (a - b)² = a² + b² + 2ab - 2ab - 2ab, ( Adding and subtracting 2ab).
=> (a - b)² = a² + b² + 2ab - 4ab,
=> (a - b)² = (a + b)² - 4ab ( Since a² + b² + 2ab = (a + b)²).
Hence proved.
Therefore, the equation (a - b)² = (a + b)² - 4ab is correct and is proved.